The development of novel immunotherapeutics has revolutionized vaccine design, introducing advanced methods to strengthen and target immune responses. These include modified proteins, peptides, and molecular adjuvants that are engineered to improve the immune system's effectiveness against pathogens. For example, certain adjuvants activate specific immune cells, such as dendritic cells or T-cells, for a more targeted response. Additionally, immunotherapeutics enable precision medicine, allowing vaccines to be tailored to individual immune profiles and making them more effective against complex diseases like cancer, HIV, and emerging viral threats. These innovative compounds not only boost vaccine potency but also enhance safety by minimizing adverse reactions. The application of novel immunotherapeutics signifies a significant leap forward, promising vaccines that offer both broad protection and improved durability in diverse patient populations.
Title : A promising novel approach to DNA vaccines
Khursheed Anwer, IMUNON, United States
Title : Nanoscopic SubATVax™ adjuvanted vaccines against influenza A types H3N2, H1N1 and influenza type B for subcutaneous administration
David Craig Wright, D4 Labs, LLC, United States
Title : The importance of post-marketing surveillance and real-world data: For a product to be successful
Regina Au, BioMarketing Insight, United States
Title : Prophylactic and molecular approaches for mitigating human influenza A viruses: i. Evaluating influenza vaccine effectiveness in the older population ii. Down-regulation of influenza virus genes with novel sirna-chimeric-ribozyme constructs
Madhu Khanna, University of Delhi, India
Title : Homology analysis of MPXV and VACV peptides underscores the need to consider both MPXV clades for vaccine development
Lara Isis Teodoro, Mayo Clinic, United States
Title : High seroprevalence of RSV antibodies in adults indicates potential undetected transmission and requires further public health assessment
Lara Isis Teodoro, Mayo Clinic, United States
Title : Commensal bacteria drive B-cell lymphomagenesis in the setting of innate immunodeficiency
Ping Xie, Rutgers University, United States
Title : Development of a platform UPLC-CAD method for high-throughput lipid quantitation and characterization in novel mRNA LNPs
Janet Muzulu, Sanofi, United States
Title : The role of immunity in the pathogenesis of SARS-COV-2 and in the protection generated by COVID-19 in different age groups
Ahmed Abdulazeez, BHRUT Trust, United Kingdom
Title : Establishing a platform method for physical appearance assessment of new parenteral pharmaceuticals
Ying Wan, Merck & Co., United States