The development of novel immunotherapeutics has revolutionized vaccine design, introducing advanced methods to strengthen and target immune responses. These include modified proteins, peptides, and molecular adjuvants that are engineered to improve the immune system's effectiveness against pathogens. For example, certain adjuvants activate specific immune cells, such as dendritic cells or T-cells, for a more targeted response. Additionally, immunotherapeutics enable precision medicine, allowing vaccines to be tailored to individual immune profiles and making them more effective against complex diseases like cancer, HIV, and emerging viral threats. These innovative compounds not only boost vaccine potency but also enhance safety by minimizing adverse reactions. The application of novel immunotherapeutics signifies a significant leap forward, promising vaccines that offer both broad protection and improved durability in diverse patient populations.
Title : The importance of post-marketing surveillance and real-world data for a product to be successful
Regina Au, BioMarketing Insight, United States
Title : Nanoscopic SubATVax™ adjuvanted vaccines against influenza A types H3N2, H1N1 and influenza type B for subcutaneous administration
David Craig Wright, D4 Labs, LLC, United States
Title : Prophylactic and molecular approaches for mitigating human influenza A viruses: i. Evaluating influenza vaccine effectiveness in the older population ii. Down-regulation of influenza virus genes with novel sirna-chimeric-ribozyme constructs
Madhu Khanna, University of Delhi, India
Title : A promising novel approach to DNA vaccines
Khursheed Nadeem Anwer, IMUNON, United States
Title : The role of immunity in the pathogenesis of SARS-COV-2 and in the protection generated by COVID-19 in different age groups
Ahmed Abdulazeez, BHRUT Trust, United Kingdom
Title : Establishing a platform method for physical appearance assessment of new parenteral pharmaceuticals
Ying Wan, Merck & Co., United States
Title : Advances in vaccines: Revolutionizing disease prevention
Delia Teresa Sponza, Dokuz Eylul University, Turkey
Title : Overcoming biophysical characterization challenges of small antigens in dilute vaccine formulations
Eric Kemp, Merck & Co., United States
Title : Commensal bacteria drive B-cell lymphomagenesis in the setting of innate immunodeficiency
Ping Xie, Rutgers University, United States
Title : A combined LC-MS and immunoassay approach to characterize preservative-induced destabilization of human papillomavirus virus-like particles adsorbed to an aluminum-salt adjuvant
Ria T Caringal, University of Kansas, United States