Epitope prediction is a critical component of modern vaccine design, helping researchers identify the specific parts of a pathogen’s proteins that can trigger a strong immune response. By analyzing the structure of antigens, computational tools are employed to predict which epitopes—small fragments of the antigen recognized by immune cells—are most likely to induce immunity. This is especially important for designing vaccines for pathogens that have high variability, like influenza or HIV. Accurate epitope prediction can significantly improve the efficacy of a vaccine, ensuring that it targets the most relevant components of a pathogen. This strategy not only enhances the immune response but also reduces the chances of the pathogen escaping immune detection due to mutations. As vaccine technology evolves, epitope prediction plays an increasingly important role in designing vaccines that provide broad protection, are more cost-effective, and can be rapidly adapted to emerging infectious diseases.
Title : A promising novel approach to DNA vaccines
Khursheed Anwer, IMUNON, United States
Title : Prophylactic and molecular approaches for mitigating human influenza A viruses: i. Evaluating influenza vaccine effectiveness in the older population ii. Down-regulation of influenza virus genes with novel sirna-chimeric-ribozyme constructs
Madhu Khanna, University of Delhi, India
Title : The importance of post-marketing surveillance and real-world data: For a product to be successful
Regina Au, BioMarketing Insight, United States
Title : Development of a novel multi-component vaccine to address the burden of otitis media in high-risk populations
Ayesha Zahid, Griffith University, Australia
Title : New biomarkers in leishmania major vaccine development
Negar Seyed, Pasteur Institute of Iran, Iran (Islamic Republic of)
Title : Approaches towards developing and establishing a biomanufacturing research & development, and manufacturing industry in Zimbabwe: A review of the need, potential funding sources, policy development and implementation
Elliot Nyagumbo, Midlands State University, Zimbabwe
Title : Evaluating the immunogenic impact of process impurities in mRNA vaccine production: Establishing integrated control strategies and specifications
Jesse Kuiper, Merck Research Laboratories, United States
Title : Capillary electrophoresis for adjuvanted multivalent recombinant vaccine purity determination
Ashley Prout, Merck, United States
Title : Hypersensitivity and anti-SARS-COV-2 vaccination: A retrospective study of the year 2021 at the University Hospital Center of Tours (France)
Faure Quentin, The Savoie Metropolitan Hospital Center, France
Title : Targeting resistance: New 4-substituted pyrazolidine and isoxazolidine as antibiotics with interesting antimicrobial activities
Yousfi Tarek, Nationale Research for Biotechnology Research Center, Algeria